\(\int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx\) [120]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 41 \[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)}} \]

[Out]

2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b
^2/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {16, 2721, 2719} \[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}} \]

[In]

Int[Cos[c + d*x]^2/(b*Cos[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sqrt {b \cos (c+d x)} \, dx}{b^2} \\ & = \frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)} \, dx}{b^2 \sqrt {\cos (c+d x)}} \\ & = \frac {2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]^2/(b*Cos[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(143\) vs. \(2(63)=126\).

Time = 2.03 (sec) , antiderivative size = 144, normalized size of antiderivative = 3.51

method result size
default \(\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(144\)
risch \(-\frac {i \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {2}\, {\mathrm e}^{-i \left (d x +c \right )}}{d b \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{-i \left (d x +c \right )}}}-\frac {i \left (-\frac {2 \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}{b \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+b \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) \sqrt {2}\, \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{i \left (d x +c \right )}}\, {\mathrm e}^{-i \left (d x +c \right )}}{d b \sqrt {\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) b \,{\mathrm e}^{-i \left (d x +c \right )}}}\) \(325\)

[In]

int(cos(d*x+c)^2/(cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))/b/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/
sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.61 \[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\frac {i \, \sqrt {2} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{b^{2} d} \]

[In]

integrate(cos(d*x+c)^2/(b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

(I*sqrt(2)*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - I*sqrt(
2)*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2/(b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2/(b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)

Giac [F]

\[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^2/(b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^2/(b*cos(d*x + c))^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{(b \cos (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(c + d*x)^2/(b*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^2/(b*cos(c + d*x))^(3/2), x)